数列{log2(An-1)(n为正整数)为等差数列,a1=3,a3=9,求{An}的通项公式10

来源:百度知道 编辑:UC知道 时间:2024/06/30 08:12:17
证明1/(a2-a1)+1/(a3-a2)+……1/[A(n+1)-An}<1

令{bn}={log2 (an-1)}

已知数列{bn}={log2 (an-1)}为等差数列,且a1=3 a3=9
所以
b1=log2 (3-1)=log2(2)=1,
b2=log2 (9-1)=log2(8)=3,
公差d=3-1=2,
所以bn=1+(n-1)×2,bn=2n-1
所以
log2 (an-1)=2n-1
所以
(1).an =2^(2n-1)
(2).a1=2^(1)=2,a2=2^(3)=8,a3=2^5=32,........
an =2^(2n-1),a(n+1) =2^(2n+1)
∴1/(a2-a1)+1/(a3-a2)+…+1/a(n+1)-an
=1/(8-2)+1/(32-8)+......+1/[2^(2n+1)-2^(2n-1)]
=1/6+1/24+......+1/3×(2^(2n-1)
=1/3×2+1/3×2^3+.....1/3×(2^(2n-1)
<1/2+1/2^3+........+1/2^(2n-1)
=(1/2)[1-(1/2)^2n]/[1-(1/2)^2]
=(1/2)[1-(1/2)^2n]/(3/4)
=(2/3)[1-(1/2)^2n]
<2/3<1

已知数列{log2(an-1)}(n属于N*)为等差数列,且a1=3,a3=9,求数列{an}的通项公式. 已知数列{log2(an-1)},(n属于正整数)为等差数列,且a1=3,a3=9,求数列{an}的前n项和Sn 已知数列{log2(an-1)},(n属于正整数)为等差数列求数列{an}的前n项和Sn,望有详细回答,方法越简单越好 数列{an}的前n项和为Sn,已知log2(Sn+2)=n+1 f(x)=log2为底x减去2/log2为底x,(0<x<1),又已知数列{an}的通项an满足f(2^a*n)=2n(n属于自然数) 已知数列{log2 (an-1)}为等差数列,且a1=3 a3=9 (1)求an (2)证明1/(a2-a1)+1/(a3-a2)+…+1/a(n+1)-an<1 数列{an}的前n项和为Sn,已知log2(Sn+2)=n+1.试问:{an}是否为等比数列?证明你的结论。 数列{ log2(An-1)}是等差数列,且A1=3,A3=5,求1/(A2-A1)+1/(A3-A2).......+1/{A(n-1)+An}的极限 an=n×(n+1)数列求和问题!!!! 数列{an}满足a1=1,an+1=2an+n,求an.